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In this paper, an analytical approach to the crack detection of rectangular plates
under uniform external loades by vibration analysis is established. The damage is
considered as an all-over part-through crack parallel to one edge of the plate. Avoiding
non-linearity, it is assumed that the crack, at all dynamical conditions, is open. In
addition, it is assumed that the plate is simply supported at the two parallel sides, and it
has arbitrary boundary conditions at the two other edges. The presence of an all-over
part-through crack on the plate introduces considerable local #exibility at the location
of the crack. This #exibility is modelled by the stress-intensity factor and compliance.
Consideration of important parameters, like, location and depth of an all-over part-
through crack, geometry and boundary conditions, magnitude of the external loades,
and plate mechanical characteristics on the change of natural frequencies of the cracked
plate are the "rst step for establishing the damage detection method. Vibration analysis
of the cracked plate with an all-over part-through crack results in an eigenvalue
problem, for which, the solution method is established and is carried out. The solution
results are presented by the appropriate charts.

( 2000 Academic Press
1. INTRODUCTION

Damage detection of one-dimensional structures by vibration analysis, is a new
technique in non-destructive evaluation methods. The conventional non-
destructive testing methods unlike the vibration analysis methods are expensive
and time-consuming. Several researchers have worked on the in#uence of cracks on
the natural frequencies and mode shapes of structures.

Anifantis et al. [1] have derived a method for crack detection of beams by
vibration analysis. The crack on the beam has been modelled as a local #exibility.
The among of #exibility depends on the crack shape and orientation and is
computed by fracture mechanics methods. Dias et al. [2] have investigated the
vibrational behavior of cracked shafts subjected to torsional loads. The crack on
the shaft has been modelled as a mode III crack. Moshre" et al. [3] proposed
0022-460X/00/070291#18 $35.00/0 ( 2000 Academic Press
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a method for determination of a peripheral crack in a thick-walled pipe. The
damaged pipe has been modelled as two undamaged beams connected by a hinge
and a torsional spring at the crack location.

Because of the complexity of the approach, vibration analysis has been mainly
used to study the special cases of vibrational behavior of cracked plates with no
emphasis on crack detection. For instance, Lee [4] has used Rayleigh's method
with a simple sub-sectioning technique to obtain fundamental frequencies of
annular plates with internal concentric cracks. Lee and Lim [5] have investigated
the vibrational behaviour of a rectangular plate with a centrally located crack.
They have also used Rayleigh's method for determining the natural frequencies of
the cracked plate considering the e!ects of transverse shear deformations and
rotary inertia.

The main purpose of the present work is to establish an analytical method for
predicting the location and depth of an all-over part-through crack in an externally
in-plane loaded rectangular plate using vibration analysis. To this end, one needs
natural frequency ratios of the cracked plate to the uncracked one in at least two
di!erent vibrational modes, which can be obtained from the experimental modal
analysis.

2. MODELLING THE ELASTIC BEHAVIOR OF PLATES WITH AN ALL-OVER
PART-THROUGH CRACK SUBJECTED TO A BENDING MOMENT AND

AN AXIAL LOAD

Consider an edge-cracked elastic strip with a unit width in the x
1

direction
subjected to an axial force N

t
and a bending moment M

b
as shown in Figure 1. The

stress intensity factor (K) of such a loaded cracked strip is given by [6]:

K"H1@2(p
t
g
t
#p

b
g
b
), (1)

where H is the strip thickness, p
b
and p

t
are the nominal stresses at a point away

from the crack due to bending moment and axial force e!ects, respectively
(p

b
"6M

b
/H2, p

t
"N

t
/H), g

b
and g

t
are dimensionless functions of the ratio of

crack depth to thickness which are given by Gross and Srawley [7] as

g
b
"m1@2(1)99!2)47m#12)97m2!23)11m3#24)80m4), (2a)

g
t
"m1@2(1)99!0)41m#18)7m2!38)48m3#53)85m4), (2b)

where m,h/H is the ratio of crack depth to strip thickness. Equations (2a) and (2b)
are valid for the range of 0(m(0)7.

One may consider two identical elastic strips, one of which has an edge crack as
shown in Figure 1. If both strips are subjected to a loading system as shown in
Figure 1, then the presence of the crack will cause the rotation of one end relative to
the other to increase more than the rotation of an uncracked strip, and also the



Figure 1. Edge cracked strip.
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elongation of the cracked strip will increase. To determine additional rotation of
the cracked strip, one may write the relation between the stress intensity factor (K)
and potential energy release rate (G), in a state of plane strain, as [8]

G"

(1!l2 )
E

K2. (3)

Upon substitution of the value of K from equation (1) into equation (3), one gets

G"

(1!l2)H
E

[g2
t
p2
t
#p2

b
g2
b
#2g

b
g
t
p
b
p
t
]. (4)

On the other hand, one can write G as the sum of potential energy release rates due
to bending moment and axial force [6]:

G"G
t
#G

b
"

1
2 Cpt

L
Lh

(Hd )#p
b

L
Lh A

HH2

6 BD , (5)

where the d and H are the additional stretch and rotation due to the presence of the
crack. By comparing equations (4) and (5), one can obtain the additional rotation,
H, as [6]

H"

12(1!l2)
E

(a
bt
p
t
#a

bb
p
b
), (6)

where the new non-dimensional compliance coe$cients a
bt

and a
bb

may be com-
puted from the following equations:

a
bb
"

1
H P

h

0

g2
b

dh, (7a)

a
bt
"

1
H P

h

0

g
b
g
t
dh. (7b)

The values of a
bb

and a
bt

depend on the crack depth and strip thickness. As an
approximation, one may assume that the stress intensity factor at a point along the



Figure 2. Rectangular plate under external in-plane loads.
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crack front of a plate with an all-over part-through constant depth crack, is
identical to the stress intensity factor for an edge-cracked strip in plane-strain state
with the same loading conditions and crack depth [6].

3. VIBRATION ANALYSIS OF A RECTANGULAR PLATE WITH AN
ALL-OVER PART-THROUGH CRACK SUBJECTED TO THE EXTERNAL

IN-PLANE LOADS

Consider an elastic rectangular plate with a thickness H and dimensions a and
b in x and y directions, as in Figure 2.

If the plate at the boundaries is subjected to uniform distributed external in-plane
loads per unit length N

x
and N

y
, one may derive the governing equation of motion

for the free vibration of the plate as [9]

L4w (x, y, t)
Lx4

#2
L4w (x, y, t)

Lx2Ly2
#

L4w (x, y, t)
Ly4

#

M
D

L2w (x, y, t)
Lt2

"N
x

L2w(x, y, t)
Lx2

#N
y

L2w (x, y, t)
Ly2

, (8)

where, M is the mass per unit area of the plate, D is the #exural rigidity and N
x
and

N
y

are the stress resultants due to axial external in-plane loads in the x
and y directions, respectively. Assuming a harmonic motion, one may use the
separation of variables technique as

w(x, y, t)"=(x, y)¹ (t) (9)
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which upon substitution of relation (9) into equation (8), one obtains

d2¹(t)
dt2

#u2¹(t)"0, (10)

L4=(x, y)
Lx4

#2
L4=(x, y)
Lx2Ly2

#
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D
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"0. (11)

The solution of equation (10) is a harmonic function

¹(t)"A sin(ut#a), (12)

where A and a are constants.
By experience, it is highly advantageous to express equation (11) in dimensionless

form. Thus, the dimensionless space variables f,x/a and, g"y/b may be intro-
duced. Accordingly, equation (11) becomes

L4=
Lg4

#2/2
L4=

Lf2Lg2
#/4j4=!

N
x
/2a2

D
L2=
Lf2

!
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y
/2a2

D
L2=
Lg2

"0, (13)

where /,b/a is the plate aspect ratio, j4,a4u2M/D, and= is the non-dimen-
sional function of f and g.

If the plate is simply supported at the boundaries f"0 and 1, then the following
series solution satis"es equation (13) [10]:

= (f, g)"
=
+

m/1

>
m
(g) sin(mnf), (14)

By substituting relation (14) into equation (13), one gets [11]
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To express the solution in a simple form, the following terms are de"ned:
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Figure 3. A rectangular in-plane loaded plate with an all-over part-through crack in non-dimen-
sional co-ordinates.
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n
x
,

a2N
x

D
, (16c)

n
y
,

a2N
y

D
, (16d)

where n
x
and n

y
are the dimensionless parameters proportional to stress resultants

N
x

and N
y
. Then the solution of equation (15) for two cases of II'I and II(I,

respectively, will be [11]:

>
m
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m
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where bN
m
"/JI#II and cN

m
"/JI!II whichever is real.

Now consider a plate containing an all-over part-through crack located at g"g
0

in f direction and subjected to external stresses p
x
and p

y
as shown in Figure 3. The

plate is divided by the crack in two regions and vibrates as a whole system.
In Figure 3 the new co-ordinates f

1
, g

1
and =

1
are related to the old co-

ordinates f, g and= by the following relations:

f
1
"f,

g
1
"(g!1), (18)

=
1
"=.

In order to perform the vibration analysis of the cracked plate, one may consider
two di!erent types of boundary conditions, (S}S}S}S) and (S}S}S}C).
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3.1. SIMPLY SUPPORTED CRACKED PLATE; (S}S}S}S)

In this case, at the crack line (inner boundary) four boundary conditions are
de"ned, and to each external boundary, two boundary conditions are applied.
However, because of the form of solutions, the boundary conditions at f"0 and
1 are automatically satis"ed. Then, in order to obtain the mode shapes of two
regions, one needs only eight boundary conditions. Four of the boundary
conditions are applied at the boundaries g"0 and g

1
"0, and the remaining four

are applied to the inner boundaries, where the crack is located, g"g
0
. One may

note that the elastic behavior of the crack has been used in de"ning the inner
boundary conditions.

Considering Figure 3, and applying the transformation relation (18), the mode
shape functions at the g direction for regions (1) and (2) are obtained as [11]
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m
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Equations (19a) and (19b) are written for the case of II'I. Similarly, for the case of
II(I one may obtain another pair of solutions. The applicable boundary condi-
tions at g"0 and g"1 are

>
1m

(0)">A
1m

(0)">
2m

(1)">A
2m

(1)"0. (20)

One can also write inner boundary conditions at the crack location as follows:

=
1g"=2g Dg/g0 (i), M

1g"M
2g Dg/g0 (ii), <

1g"<2g Dg/g0 (iii) (21)

The above equations show the equality of de#ections, bending moments and shear
forces at the two sides of the crack location respectively. In order to obtain the
relation between the rotations of two sides of the crack, one may express p

t
in term

of n
y

as [11]

p
t
"

EH2n
y

12(1!l2)a2
(22)

and p
b
in terms of lateral de#ection of the plate as [12]

p
b
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!EH
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L2w
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#l
L2w
Lx2B . (23)



Figure 4. The variation of the dimensionless bending compliance coe$cient, a
bb

, versus relative
crack depth m"h/H [6].
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Upon substitution of equations (22) and (23) into equation (6), one obtains

H"

H2n
y

a2
a
bt
!6Ha

bb A
L2w
Ly2

#l
L2w
Lx2B . (24)

In the above relation, the "rst term is a constant and independent of w, while the
second term determines the crack #exibility. One may write the second term in
a dimensionless form as, h:

h,!

6H
b

a
bb A

L2w
Lg2

#l/2
L2w
Lf2 B. (25)

Then, the fourth inner boundary condition becomes [11]
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By application of the aforementioned boundary conditions and the crack conti-
nuity conditions (inner boundary conditions), one may obtain a set of homogene-
ous equations for the two cases of II'I and II(I.

Setting the determinant of the coe$cient matrix equal to zero, one gets the
frequency equation of the cracked plate, for the case of II'I as [11]



where l*,(2!l

sinh bN
m
g
0

!sinh bN
m
(1!g

0
) !sin c6

m
(1!g

0
)

CbN mcosh bN
m
g
0
# bN

m
cosh bN

m
(1!g

0
) cN

m
cos c6

m
(1!g

0
)

6H

b
a
bb

(bN 2
m
(mn2)l/2) s g

0D
sinh bN

m
g
0
(bN

m
!(mn2) !(bN 2

m
!(mn2)l/2) sinh bN

m
(1!g

0
) (c6 2

m
#(mn2)l/2 ) sin c6

m
(1!g

0
)

bN
m
(bN 2

m
!(mn2)l*/2) c

0
bN
m
(bN 2

m
!(mn2)l*/2)cosh bN

m
(1!g

0
) !cN

m
[cN 2

m
#(mn2)l*/2] cos cN

m
(1!g

0
)

"0, (27)

L
O

C
A

T
IO

N
A

N
D

D
E

P
T

H
O

F
A

C
R

A
C

K
299
).

sin c6
m
g
0

CcN m cos cN
m
g
0
!

inh bN
m
g
0D

6H

b
a
bb
(cN 2

m
#(mn2)l/2)sinh bN

m

l/2) !(cN 2
m
#(mn2)l/2) sin cN

m
g
0

osh bN
m
g
0

!cN
m
(cN 2

m
#(mn2)l*/2) cos cN

m
g



300 S. E. KHADEM AND M. REZAEE
Similarly, one may obtain the second frequency equation for the case II(I.
The above determinant, is in terms of four parameters a

bb
, g

0
, bN

m
, and cN

m
. If the

external loads are known then, the only parameters to play with in the frequency
equations will be a

bb
, g

0
, j.

Since, a
bb

is related to h/H through relation (7), and to make the analysis easier,
one can obtain the relative crack depth, using the Figure 4.

It is evident from the Figure 4 that a
bb

increases by increasing the value of the
relative crack depth.

In the frequency equation, the parameters crucial to the crack detection are h/H,
g
0

and j. Making use of the frequency equation with an integer value of mode
numbers m and n (i.e., m"1, n"1) and setting j to any sensible value, based on the
eigenvalue of the intact plate as an estimation, one can trace the variation of h/H
versus g

0
for the range of g

0
"0 to 1. At the same time, the new variable Rj is

introduced as

Rj,
j
d

j
I

, (28)

where j
d
is the eigenvalue of the damaged plate and j

I
is the eigenvalue of the intact

plate at the same mode. The maximum value of Rj is equal to one, which
corresponds to the undamaged plate. This stems from the fact that the undamaged
plate is sti!er than the damaged one. To obtain the eigenvalue of the intact plate,
j
I
, one may use the following relation as [11]

j
I
"GCA

n
/B

2
#m2D

2
n4#CnyA

n
/B

2
#(n

x
m2)n2H

1@4
. (29)

Having the above procedure repeated for the other values of m and n (i.e., m"1,
n"2) one can obtain a chart for determining the crack depth and location, keeping
in mind that considering only two modes are su$cient for crack detection. As an
example, the following mechanical characteristics and dimensions of the plate are
used:

E"200 Gpa, a"0)2m,

l"0)3, b"0)3 m,

o"7860 kg/m3, H"0)01 m

for which Figures 5(a)}5(c), the identi"cation charts, are plotted in the co-ordinate
system g

0
}m for aspect ratio of /"1)5, di!erent values of Rj , and given values of

external stresses p
x

and p
y
(p

x
"N

x
/H, p

y
"N

y
/H).

Figures 5(a)}5(c) have been plotted for the range of 0)g
0
)0)5 due to the

symmetry of Rj curves about g
0
"0)5.



Figure 5. Identi"cation chart for: (a) p
x
"0, p

y
"0. (b) p

x
"0)5 MPa, p

y
"1 MPa. (c) p

x
"1 MPa,

p "2 MPa.
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In Figures 5(a)}5(c), the &&U'' shape curves correspond to the second vibration
mode (m"1, n"2) and the rest of the curves corresponds to the "rst vibration
mode (m"1, n"1). Knowing the external loads and eigenvalue ratios for the "rst
two vibration modes, Rj , one may construct the identi"cation chart and determine
the intersection point of Rj curves.

The abscissa and the ordinate of the intersection point represent the relative
crack location, g

0
, and the relative crack depth, m respectively. Accordingly, the



Figure 6. A rectangular cracked plate with (S}S}S}C) edge conditions under external in-plane
loads in non-dimensional co-ordinates.
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crack depth and location can be obtained from the relations h"Hm, y"bg
0
. In

practice, one needs to measure the frequency of the damaged plate using the
experimental modal analysis method. Therefore, one may introduce the new de"ni-
tion as &&frequency ratio''.

R
f
"

u
d

u
I

(30)

where u
d
is the natural frequency of the damaged plate at any vibration mode and

u
I

is the natural frequency of the intact plate at the same vibration mode. The
relationship between the eigenvalue ratio, Rj , and the frequency ratio, R

f
is [11]

Rj"R1@2
f

. (31)

As mentioned before, using the simply supports for all edges of the plate, led to
the symmetry of the identi"cation charts, and two solutions were obtained which
suggest two di!erent locations for the presence of the crack. This matter obscures
the decision making. Therefore, one can remove this de"ciency by using di!erent
types of supports at g"0 and 1 for the crack detection purposes.

3.2. CRACKED PLATE WITH (S}S}S}C) EDGE CONDITIONS

Consider a cracked plate with (S}S}S}C) edge conditions and subjected to
a loading system as shown in Figure 6.

To obtain the frequency equation of the uncracked plate, one needs to go to
intensive computational e!orts, in order to obtain the frequency equation for the
intact plate as [11]
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m
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m
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m
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m
"0. (32)

The same procedure is followed to obtain the frequency equation of the cracked
plate for the case of II'I [11]:
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Figure 7. The variation of the relative crack depth (h/H) versus the dimensionless crack location
(g

0
) for di!erent values of Rj: (a) for the 1st and 2nd modes, (b) for the 3rd mode.
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In fact, using the "rst two modes will give us more than one intersection point as
the crack position. Therefore, one needs to use the third vibration mode to identify
exactly the location and depth of the crack. Therefore, there is no symmetry
apparent in the Figures 7(a) and 7(b).

3.3. A DISCUSSION ABOUT THE ACCURACY AND THE SENSITIVITY OF THE METHOD

In the present work, for calculating the natural frequencies of the cracked and
uncracked plate used for obtaining the relative crack depth and location, the e!ects
of some parameters like, damping, the lack of complete uniformity of the geometri-
cal and mechanical characteristics of the plate, and the lack of true boundary
conditions, etc. have been ignored and it is assumed that the geometrical and
mechanical characteristics as well as the boundary conditions of the cracked
plate are the same as those for uncracked plate. If these assumptions are
applicable in practice, the method will work accurately. But due to the
aforementioned parameters, the calculated natural frequencies would be the
di!erent from those that would have been determined experimentally, causing some
errors in the method.

To analyze the accuracy and the sensitivity of the approach to errors and
inaccuracies, consider a crack at a relative location g

0
"0)4, and check the e!ect of

the relative crack depth by having h/H"0)2 and h/H"0)6.
For the case of h/H"0)2 and by referring to Figure 5(a), the eigenvalue ratios at

the "rst mode (m"1, n"1) and the second mode (m"1, n"2), can be obtained
as

Rj11
"0)9984, Rj12

"0)9987
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using equation (31), the corresponding frequency ratios would be

R
fÇÇ

"0)9968, R
fÇÈ

"0)9974.

By referring to the mechanical and geometrical characteristics used for the curves
in Figure 5(a), the decrease of natural frequencies of the plate due to the presence of
a crack with h/H"0)2, at the above-mentioned modes can be obtained as

D
fÇÇ

"2)77 Hz, D
fÇÈ

"4)33 Hz.

If the last calculations are repeated for the case of h/H"0)6, the following results
will be obtained:

RjÇÇ
"0)9840, R

fÇÇ
"0)9683, D

fÇÇ
"27)45 Hz,

RjÇÈ
"0)9870, R

fÇÈ
"0)9742, D

fÇÈ
"42)96 Hz.

By considering an error equal to 0)2% in calculating the frequency ratios, the
maximum and minimum values of frequency ratios, eigenvalue ratios, as well as the
maximum and minimum values of reduction in natural frequencies for the case of
h/H"0)2 will be as follows:

(R
fÇÇ

)
.!9

"0)9988, (RjÇÇ
)
.!9

"0)9994, (D
fÇÇ

)
.!9

"2)78 Hz,

(R
fÇÇ

)
.*/

"0)9948, (RjÇÇ
)
.*/

"0)9974, (D
fÇÇ

)
.*/

"2)76 Hz,

(R
fÇÈ

)
.!9

"0)9994, (RjÇÈ
)
.!9

"0)9997, (D
fÇÈ

)
.!9

"4)34 Hz,

(R
fÇÈ

)
.*/

"0)9954, (RjÇÈ
)
.*/

"0)9977, (D
fÇÈ

)
.*/

"4)32 Hz

and for the case of h/H"0)6, one can obtain

(R
fÇÇ

)
.!9

"0)9702, (RjÇÇ
)
.!9

"0)9850, (D
fÇÇ

)
.!9

"27)50Hz,

(R
fÇÇ

)
.*/

"0)9664, (RjÇÇ
)
.*/

"0)9830, (D
fÇÇ

)
.*/

"27)40Hz,

(R
fÇÈ

)
.!9

"0)9761, (RjÇÈ
)
.!9

"0)9880, (D
fÇÈ

)
.!9

"43)05Hz,

(R
fÇÈ

)
.*/

"0)9723, (RjÇÈ
)
.*/

"0)9860, (D
fÇÈ

)
.*/

"42)87Hz.

Now, if curves, same as those in Figure 5(a) are plotted by interpolation for values
of (RjÇÇ

)
.!9

, (RjÇÇ
)
.*/

, (RjÇÇ
)
.!9

and (RjÇÈ
)
.*/

corresponding to the case of h/H"0)2,
the enclosed area among these curves will be a geometric locus for possible
answers of relative crack depth and location. In the mentioned area, the
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values of h/H and g
0

vary from 0)12 to 0)25 and 0)33 to 0)46 respectively. In other
words, an error equal to 0)2% in calculating the frequency ratios causes maximum
errors in obtaining the relative crack depth and location equal to $0)8 and $0)7
respectively.

By considering the above analysis for the case of h/H"0)6, the values of h/H and
g
0

vary from 0)57 to 0)62 and 0)38 to 0)42 respectively. In this case the maximum
errors in obtaining the relative crack depth and location will be $0)03 and $0)02
respectively.

As a result, the proposed method for obtaining the crack depth and location is
sensitive to the errors; for a certain value of the error in obtaining the frequency
ratio, by increasing the depth of the crack the enclosed area among the curves will
be reduced. So the in#uence of errors on obtaining the crack depth and location,
will be reduced. However, by decreasing the depth of the crack, the area of the
geometric locus for possible solutions will increase; thus, the accuracy of the
method will be reduced.

In addition, by comparing the calculated D
f
s in the above example, it is obvious

that, for a certain relative crack location, the less the depth of the crack, the less the
natural frequencies of the cracked plate will be reduced. Therefore, the value of the
error resulting from inaccuracies of measurements will be increased, while for
deeper cracks, the reduction of the natural frequencies of the cracked plate is
considerable and the errors in comparison with those values will be insigni"cant.

Furthermore, it should be noted that while the Rj values are close to unity and
the di!erences between them are so small, the corresponding di!erences between
the natural frequencies of uncracked and cracked plate (D

f
) are signi"cant.

4. CONCLUSIONS

Introduction of an all-over part-through crack in a plate subjected to external
loads decreases the natural frequencies of the plate and by growing the crack depth,
the growth rate of the local #exibility is accelerated. By increasing the crack depth,
the natural frequencies diminish. On the other hand, presence of a crack with
special depth, depending on its location, would a!ect each of the natural frequen-
cies di!erently.

In the case of simply supported plate, as much as the crack becomes close to the
boundaries g"0 and 1, the in#uence of the crack on the natural frequencies is
reduced and for other regions this e!ect depends on vibration mode. Other
parameters like external loads applied at the boundaries also in#uence the plate
natural frequencies. By comparing Figures 5(a)}5(c) it is apparent that by increas-
ing the external loads, the intersection points of curves are altered, and the trend of
these changes at larger values of eigenvalue ratios is quite obvious. Also from these
"gures, it is clear that on the m"h/H"constant line for the "rst vibration mode,
the value of the eigenvalue ratio (Rj) diminishes by distance away from the
boundaries (g"0, 1).

This means that, the in#uence of an all-over part-through crack with a constant
depth on the "rst natural frequency of the cracked plate increases as much as it gets
closer to the center of the plate (g

0
"0)5). The same situation for the second
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vibration mode takes place at in the range of g
0
"0 and 0)25. In other words, the

maximum e!ect of an all-over part-through crack with a constant depth on the
second natural frequency occurs when the crack is located at g

0
"0)25 or 0)75. In

Figures 5(a)}5(c) the value of crack relative depth (m) at the boundaries g
0
"0 and

1 for any value of Rj , becomes in"nity (from a theoretical stand point), which
means that at the "rst vibration mode (m"1, n"1) of simply supported plate,
there is no bending moment at the simply supported edges. In other words, the
i
y
(curvature of the mid plane of the plate at y direction) at the simply supported

edges is zero. The aforementioned case for the second vibration mode occurs at the
three points (g"0, 0)5 and 1). At these points, the presence of an all-over part-
through crack would not a!ect the corresponding natural frequencies of the intact
plate.

This result cannot be extended to the other type of edge conditions. For instance,
if the plate is clamped at g"1 (as described at section 3.2), then any de#ection due
to transverse vibration of the plate causes bending moments at the clamped edge.
Therefore, if we use the two di!erent kinds of supports at the boundaries g"0 and
1, then the symmetry of the Rj"constant curves with respect to the point g"0)5
will be removed as shown in Figures 7(a) and 7(b). In this case, one can obtain
a single solution by intersecting the Rj"constant curves at three vibration modes.
The advantage of this case is that a unique solution is obtained which suggests the
crack location exactly.
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APPENDIX: NOMENCLATURE

a,b plate dimensions
D plate #exural rigidity, "EH3/12(1!l2)
E Young's modulus
g
b
, g

t
dimensionless functions

G, G
b
, G

t
potential energy release rate

H plate thickness
h crack depth
K stress intensity factor
M mass per unit area of the plate
M

b
bending moment

m, n mode numbers
N

t
, N

x
, N

y
stress resultants (axial force per unit length)

n
x
, n

y
non-dimensional external force

R
f

frequency ratio
Rj eigenvalue ratio
¹(t) time dependent function
<

1g2 shear force per unit length
=, w transverse de#ection
x, y, z rectangular co-ordination axis
a
bb

, a
bt

dimensionless compliance coe$cients
bN
m
, cN

m
non-dimensional frequency parameters

f, g dimensionless co-ordinates
H, h slope discontinuity at crack location
j
1

eigenvalue of the intact plate
j
d

eigenvalue of the damaged plate
l the possion ratio
m relative crack depth
o mass per unit volume of the plate
p
b

bending stress
p
t

normal stress due to axial force
/ plate aspect ratio
u

I
natural frequency of the intact plate

u
d

natural frequency of the damaged plate
I, II dimensionless parameters
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